走进无限美妙的数学世界-亚博安卓

有趣的回文数

我国古代有一种回文诗,倒念顺念都有意思,例如“人过大佛寺”,倒读起来便是“寺佛大过人”。还有经典的对联“客上天然居,居然天上客”。此种例子举不胜举。

在自然数中也有类似情形,比如1991就是一个很特殊的四位数,从左向右读与从右向左读竟是完全一样的,这样的数称为“回文数”。这样的年份,在20世纪是仅有的一年。过了1991年,需要再过11年,才能碰到第二个回文数2002。 

例如,人们认为,回文数中存在无穷多个素数11,101,131,151,191……。除了11以外,所有回文素数的位数都是奇数。

道理很简单:如果一个回文素数的位数是偶数,则它的奇数位上的数字和与偶数位上的数字和必然相等;根据数的整除性理论,容易判断这样的数肯定能被11整除,所以它就不可能是素数。

人们借助电子计算机发现,在完全平方数、完全立方数中的回文数,其比例要比一般自然数中回文数所占的比例大得多。例如112=121,222=484,73=343,113=1331,114=14641……都是回文数。

人们迄今未能找到五次方以及更高次幂的回文数,于是数学家们猜想:不存在nk(k≥5;n、k均是自然数)形式的回文数。 

人们在用计算机计算回文数的过程中还发现了一个有趣的规律:任何一个自然数与它的倒序数相加,所得的和再与和的倒序数相加,……如此反复进行下去,经过有限次步骤后,最后就有可能得到一个回文数。但这也仅仅是个猜想,因为有些数并不“驯服”。比如说196这个数,按照上述变换规则重复了数十万次,仍未得到回文数。但是人们既不能肯定运算下去永远得不到回文数,也不知道需要再运算多少步才能最终得到回文数。

 
网站地图