走进无限美妙的数学世界-亚博安卓

对数创造者——纳皮尔

纳皮尔(napier,1550-1617年)是苏格兰数学家。纳皮尔1550年出生在苏格兰首府爱丁堡,他从小喜欢数学和科学,并以其天才的四个成果被载入数学史.。其中他发明的对数使整个欧洲沸腾了。.拉普拉斯认为“对数的发现,以其节省劳力而延长了天文学家的寿命”。可以说对数的发现使现代化提前了至少二百年。    

对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?

   

在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科 。可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间。纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。

当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样。在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的。 

那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法。让我们来看看下面这个例子: 
  0、1、2、3、4 、5 、6 、7、8、9、10、11、12、13、14、……
  1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、…… 

这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂。如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现。 

比如,计算64×256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384。

纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了。回忆一下,我们在中学学习运用对数简化计算的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了。这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗?

经过多年的探索,纳皮尔男爵于1614年出版了他的名著《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点。所以纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣。伟大的导师恩格斯在他的著作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明。法国著名的数学家、天文学家拉普拉斯曾说:对数,可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”。

  下面是广泛流传的有关纳皮尔的两个小故事

一次,他宣称他的黑毛公鸡能为他证实,他的哪一个仆人偷了他的东西。仆人们被一个接一个地派进暗室。要他们拍公鸡的背,仆人们不知道耐普尔用烟灰涂黑了公鸡的背。自觉有罪的那个仆人怕碰着那个公鸡。所以回来时手是干净的。

还有一次耐普尔因他的邻居的鸽子吃他的粮食而感到烦脑,他恫吓道:如果他邻居不限制鸽子,让它们乱飞,他就要没收些鸽子。邻居认为他的鸽子是根本不可能被捉住的,就告诉耐皮尔,如果他能捉住他们,尽管捉好了。第二天,邻居看到他的那些鸽子在耐普尔的草坪上蹒跚地走着,十分惊讶。耐普尔镇静自若地把它们装进一只大口袋.原来,耐普尔在他的草坪上各处撒了些用白兰地酒泡过的豌豆,使这些鸽子醉了。

 
网站地图